If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-20q+36=0
a = 1; b = -20; c = +36;
Δ = b2-4ac
Δ = -202-4·1·36
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-16}{2*1}=\frac{4}{2} =2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+16}{2*1}=\frac{36}{2} =18 $
| 10-0x=10 | | 5(4+2x)+5=3(2x+5)+4x+10 | | 5x+12=7x+8=10+8x | | -3=-6n | | 3.5x-20=2.4x+2 | | 16+6w=67 | | 1/3(5+a)=8 | | 4^(x+1)=16^x | | y-0.8y=3500 | | 100=12x+41 | | 12-e=0 | | 14r+-2r=12 | | 0.4x=420 | | 20=c/23 | | 18f=918 | | 16m=416 | | 23u=575 | | 7v=707 | | d/19=10 | | w/24=5 | | 480=10c | | 368=16w | | 20=g/29 | | z/22=29 | | y/14=26 | | 133=7w | | 28=m/15 | | 3q=897 | | 0.5=x/3/5 | | r/22=8 | | 5n/2+5=-25 | | -23x-6x(5x-41)=259-41x |